If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2-1.5z+0.5=0
a = 1; b = -1.5; c = +0.5;
Δ = b2-4ac
Δ = -1.52-4·1·0.5
Δ = 0.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1.5)-\sqrt{0.25}}{2*1}=\frac{1.5-\sqrt{0.25}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1.5)+\sqrt{0.25}}{2*1}=\frac{1.5+\sqrt{0.25}}{2} $
| m=2(3,8) | | (8x-37)+(3x+3)=180 | | 3(2m-1)=17 | | x=3449,16+(x*0,1) | | 3x²+6=42 | | 69÷m=3 | | 50=25*1.2^x | | 10x(x-1)=2(2x-5) | | (x+10)²=84 | | 6/24=3/n | | 3G-26=23-4g | | 2^n+1=32 | | 7u+11=-73 | | 5+3(42+7)-7(2+32*8)0=x | | 6p+11=p-9 | | 6p+|1=D-9 | | (3-7x)/(5x-2)=0 | | 1,5x=74 | | E(x)=x(x-3)^2+2(x-2)(x+2)+(2x+1)^2-7(2x-1) | | 8w+20-20=4-20 | | x/60=1.2 | | T=0.5x-20 | | (-3x^2-2x+3)/((x^2+1)^2)=0 | | 5e+2=2e+7 | | 5e-2=2e+6 | | 2x2+3x.8x-1=16 | | 4(x-3)=3x+3-2x | | 20x+3=10-8x | | -4x-7=3x-49 | | (2x-2)=(3x-9) | | (4x+3)=(x+21) | | (x+9)=19 |